Отказоустойчивость коммуникационных сетей со свойствами малого мира

А. Демичев¹, В. Ильин^{1,2}, А. Крюков¹, С.Поляков¹

¹НИИ ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова ²Национальный исследовательский центр "Курчатовский институт"

Аннотация

В работе исследована устойчивость важнейших характеристик стохастических и регулярных (детерминистских) коммуникационных сетей с малым средним расстоянием между узлами (сети "малого мира") при выходе из строя части узлов. Показано, что в широком диапазоне значений относительного числа вышедших из строя узлов рассмотренные сети являются весьма устойчивыми к выходу узлов из строя, причем детерминистские сети ведут себя несколько лучше, чем стохастические.

1 Введение

Одной из важнейших составляющих любого суперкомпьютера является коммуникационная сеть, которая в первую очередь определяет возможность увеличения числа вычислительных узлов, что необходимо для достижения желаемой производительности. Как ожидается (см., например, [1]), коммуникационная сеть суперкомпьютеров экзафлопсного уровня будут иметь порядка 10^5-10^6 вычислительных узлов (*без* учета числа ядер каждого ЦПУ). Таким образом, одной из ключевых задач, которую предстоит решить на пути к построению суперкомпьютеров следующего поколения, является разработка коммуникационных сетей с хорошими свойствами масштабируемости, возможностью эффективно и надежно обслуживать огромное число вычислительных узлов.

В классе прямых коммуникационных сетей, в которых каждый узел является терминальным, действующим как источник и приемник для сообщений, а также и как маршрутизатор для управления входящими сообщениями, весьма популярными являются коммуникационные сети со структурой регулярных решеток и топологией D-мерных торов. Для них часто используется термин "k-ary D-cube" [2] (D — размерность тора; k — число узлов вдоль каждого из измерений). Такие сети обладают рядом преимуществ, особенно при решении специфических задач моделирования D-мерных объектов, когда структура вычислительной задачи оптимальным образом отображается на D-мерную решетку вычислительных узлов, а именно такого типа задачи, как предполагается, будут составлять значительную долю задач, решаемых

на суперкомпьютерах экзафлопсного уровня. Однако при огромном числе узлов, характерном для компьютеров следующего поколения, архитектура простых регулярных решеток имеет и существенные недостатки. В частности, решетки невысокой размерности имеют весьма большую среднюю длину пути между узлами, а решетки высокой размерности трудно реализовать технически из-за большой длины физических коммуникационных каналов. С другой стороны, известно, что наилучшими структурами вычислительных систем по различным критериям функционирования, например, производительности и надежности, при одинаковом числе вычислительных узлов и каналов связи являются структуры с минимальным средним расстоянием между узлами (см., например, [3]). Поэтому обычные сети с простой структурой регулярных решеток окажутся недостаточно эффективными для решения задач более общего типа, не связанных с триангуляцией *D*-мерных объектов.

В связи с этим представляется перспективным использовать для построения коммуникационных сетей для экзафлопсных компьютеров решеточные сети с дополнительными связями — перемычками — между узлами. При правильном построении такие перемычки обеспечивают малое среднее расстояние d между узлами и малый диаметр \mathcal{D} сети. В частности, для ряда таких сетей с перемычками среднее расстояние d между узлами растет как логарифм числа узлов: $d \sim \ln N$, в то время как для обычной D-мерной решетки оно растет существенно быстрее — как степень числа узлов: $d \sim N^{1/D}$.

Часто сети с медленным (медленнее чем $N^{1/D}$) ростом среднего расстояния называют сетями "малого мира". Такие сети могут быть построены как с помощью детерминистских, так и с помощью стохастических алгоритмов (см., например, работу [5] и ссылки в ней). Оригинальный алгоритм получения сложной сети со свойствами малого мира [8] является стохастическим: на каждом шаге алгоритма ребра графа меняют свое положение с некоторой вероятностью. В результате многократного применения такого алгоритма возникает ансамбль графов с некоторым распределением их характеристик, в частности, средней длины пути между узлами экземпляра графа. Для многих реальных сетей стохастический процесс оказывается внутрение присущим (это справедливо, в частности, для сети Интернет). Однако проектирование коммуникационной сети суперкомпьютера находится под контролем разработчика, и поэтому стохастичность не является внутренне присущим элементом этого процесса. Поэтому важным вопросом является следующий: существует ли такой регулярный (детерминистский) алгоритм модификации решетки с помощью перемычек, превращающей ее в сеть "малого мира", чтобы характеристики получившейся сети были лучше, чем при использовании стохастических алгоритмов. В работе [5] проведено сравнение для ряда детерминистских и стохастических алгоритмов с точки зрения оптимизации соотношения "цены" и "качества" причем в качестве "цены" выступает удельная длина дополнительных перемычек (общая длина перемычек в единицах базовой решетки, деленная на число узлов сети), а "качество" — это глобальная или локально-навигационная (см. [9]) средняя длина пути между узлами. Показано, что существуют детерминистские алгоритмы, которые по этому показателю не уступают стохастическим сетям или превосходят их.

Важно отметить, однако, что для сверхбольших коммуникационных сетей, какими ожидаются сети экзафлопсных суперкомпьютеров, практически неизбежны случаи отказов части узлов коммуникационной сети в силу физической неисправности или просто перегрузки. Поэтому весьма важным для таких сетей является вопрос об устойчивости значений важнейших характеристик сети при выходе из строя части узлов (fault tolerance). Выход из строя части узлов коммуникационной сети приводит к некоторой стохастичности даже регулярных коммуникационных сетей, построенных по детерминистским алгоритмам. При этом может оказаться, что выход из строя узлов сильнее сказывается на характеристиках регулярных сетей, чем в случае сетей, которые изначально были стохастическими и нерегулярными.

Цель данной работы — сравнить устойчивость детерминистских (регулярных) и стохастических (нерегулярных) сетей. В данной работе для такого сравнения рассмотрены сети на основе двумерных регулярных решеток D = 2, к которым стохастическим или детерминистским образом добавляются перемычки. При этом рассматриваются только топологические (статические) характеристики — среднее навигационное расстояние (то есть расстояние при выбранной маршрутизации), нагрузка относительно маршрутизации (см. определение ниже), а также характеристики сетей при учете каскадных отключений узлов за счет перегрузки. Динамические модели передачи сообщений в рассматриваемых коммуникационных сетях, в частности, на основе теории систем массового обслуживания, будут изучены в следующих работах.

2 Алгоритмы построения сетей и маршрутизации сообщений

Мы будем использовать следующий вариант стохастического алгоритма (сравнение различных вариантов см. в [5]): исходным объектом является двумерная решетка с $N = L \times L$ узлами и топологией двумерного тора; последовательно перебираются все узлы решетки и к каждому узлу (i, j) подсоединяют первый конец перемычки $(1 \le i, j \le L)$;второй конец перемычки (то есть, узел решетки (k, l), в который она входит) не может совпадать с соседями исходного узла в смысле базовой решетки и приводить к дублированию уже существующей перемычки, а в остальном выбирается случайно с вероятностью $P(r) \sim r^{-\alpha}$, которая является степенной функцией решеточного расстояния $r = r_{(ij),(kl)}$ между узлами (i, j) и (k, l) (r обозначает решеточное расстояние между произвольной парой узлов). Зависимость вероятности появления перемычки от расстояния между узлами отражает корреляцию между топологическими и пространственными свойствами сети [4].

Среди множества детерминистских сетей с малым средним расстоянием наиболее предпочтительной по своим общим характеристикам представляется сеть iBT (Interlaced Bypass Torus Networks) [6]. Поэтому именно эту детерминистскую сеть мы будем сравнивать со стохастической сетью — с точки зрения устойчивости значений ее характеристик при выходе из строя части узлов. Детальное описание и анализ этих сетей можно найти в работе [7].

Как правило для маршрутизации сообщений в больших сетях используются адаптивные алгоритмы (см., например, [2]). Однако, как правило, эффективность конкретного адаптивного алгоритма существенно зависит от типа и архитектуры сети, для которой он используется. Поскольку в данной работе мы сравниваем существен-

но разные — стохастические и детерминистские — коммуникационные сети, мы используем максимально общий адаптивный алгоритм маршрутизации, основанный на принципах локальной навигации [9]. При локальной навигации узел "знает" только географическое положение (другими словами, положение в базовой решетке) всех узлов и своих ближайших сетевых соседей с учетом перемычек. Используя только такую информацию (информация обо всех перемычках в сети не используется) необходимо доставить сообщение в узел назначения по возможно кратчайшему пути. В простейшем варианте эту задачу решает так называемый жадный алгоритм (англ. greedy algorithm; иногда называется также алгоритмом экономного продвижения): текущий узел пересылает сообщение тому из своих соседей, который географически — то есть в смысле координат на решетке — ближе всего к цели (узлу назначения). Некоторые сети обладают весьма большой средней длиной пути между узлами при навигации, основанной на простейшем жадном алгоритме. Для исправления такой ситуации можно использовать модифицированный алгоритм локальной навигации — двухуровневую локальную навигацию [5]. В этом варианте просматриваются не только ближайшие соседи, но и соседи соседей. При этом сообщение на следующем шаге пересылается в тот соседний узел, один из соседей которого ближе всего к узлу назначения в смысле решеточной метрики. Заметим, что если для регулярной сети используется маршрутизация, привязанная к конкретной регулярной структуре, то при выходе из строя узлов (разрушении этой регулярной структуры) длина путей должна меняться сильнее, чем просто для жадного алгоритма, который является универсальным для любых сетей. Другими словами, представляется, что жадный алгоритм может быть не самым оптимальным для регулярных сетей, но наиболее устойчивым по отношению к выходу из строя части узлов сети.

Конечно, при возможности выхода из строя части узлов жадный алгоритм требует уточнения — на случай, когда узел, куда сообщение должно перейти в соответствии с (простым или двухуровневым) жадным алгоритмом маршрутизации оказывается неисправным, в частности, запрещается возвращаться в узел, из которого сообщение пришло на предыдущем шаге. Сообщение считается потерянным, если: некуда идти; пройденный путь больше $2\mathcal{D}^{(2)}$, где $\mathcal{D}^{(2)}$ — навигационный диаметр, т.е. максимальная длина пути в сети при использовании жадного алгоритма с глубиной просмотра два.

3 Устойчивость сетей при выходе из строя части узлов

Для сравнения устойчивости из набора сетей каждого вида были выбраны лучшие образцы с точки зрения средней навигационной длины $\ell^{(2)}$ и MHOM (forwarding index) f_{max} для сетей *без* вышедших из строя узлов. Узлы, которые считаются вышедшими из строя, выбирались случайно, несколько раз (10 для представленных графиков) для каждого экземпляра сети и каждого значения числа *b* неисправных узлов. Результаты усреднены по этим выборкам.

Зависимость доли *u/M* недоставленных при выбранном алгоритме сообщений (*M* – полное число сообщений, сгенерерированных в моделируемой системе) от доли *b/N*

Рис. 1: Зависимость доли u/M недоставленных при выбранном алгоритме сообщений от доли вышедших из строя узлов в стохастических сетях (окружности) и в сетях iBT (ромбы); линейный размер всех сетей L = 128

вышедших из строя узлов в стохастических сетях с $\alpha = 1$ (окружности) и в сетях iBT (ромбы) показана на рис. 1. Линейный размер всех сетей L = 128, а полное число узлов $N = 16384 \approx 1.6 \times 10^4$. Видно, что при относительно небольшой доле неисправных узлов в iBT-сетях оказывается меньше потерянных сообщений, а при достижении доли неисправных узлов $\sim 10\%$ относительное число потерянных сообщений сравнивается для обоих типов сетей.

3.1 Устойчивость значений среднего навигационного расстояния при выходе из строя части узлов сети

На рис. 2 показана зависимость среднего навигационного расстояния $\ell^{(2)}$ от доли числа вышедших из строя узлов b/N в стохастических сетях при $\alpha = 1$ (сплошные линии соответствуют лучшим образцам из ансамбля в 100 экземпляров) и в іВТ-сетях при $s_1 = 8, s_2 = 32$ (прерывистая линия) в случае, когда сообщения, не достигшие узла-адресата, не учитывается. Очевидно, это дает нижнюю оценку для реальной величины $\ell^{(2)}$. Было осуществлено также численное моделирование зависимости навигационной длины пути от числа вышедших из строя узлов, при котором для не достигших узла-адресата сообщений длина пути считается равной нескольким навигационным диаметрам, например $3\mathcal{D}^{(2)}$ или $10\mathcal{D}^{(2)}$. Результаты моделирования показывают, что качественное поведение результатов не зависит от величины пути, которое приписывается недоставленным сообщениям (если этот путь $\gtrsim 2\mathcal{D}^{(2)}$) и практически совпадает с нижней оценкой, представленной на рис. 2; оба лучших экземпляра стохастических сетей и iBT-сеть ведут себя примерно одинаково; пока доля вышедших из строя узлов $\lesssim 10\%$, средняя навигационная длина практически не меняется; когда доля вышедших из строя узлов $\gtrsim 10\%$, средняя навигационная длина резко возрастает.

Рис. 2: Зависимость среднего навигационного расстояния $\ell^{(2)}$ от числа вышедших из строя узлов *b* в стохастических сетях (сплошные линии) и в iBT-сетях при k =8, 32 (прерывистая линия); сообщения, не достигшие узла-адресата, не учитываются; линейный размер сетей L = 128

3.2 Устойчивость значений нагрузки при выходе из строя части узлов сети

На рис. З показаны результаты численного моделирования для зависимости МНОМ f_{max} от доли вышедших из строя узлов b/N в стохастических и iBT-сетях. МНОМ, созданная недоставленными сообщениями, учитывается так же, как и дошедшими до адресата. Для вышедших из строя узлов НОМ считается равной нулю. Результаты показывают, что до значений $\approx 10\%$ в случае стохастических и iBT-сетей МНОМ практически не меняется, и оба типа сетей (стохастические и детерминистские) ведут себя примерно одинаково (но нагрузка для iBT-сетей несколько ниже). При достижении доли неисправных узлов $\gtrsim 10\%$ максимальная нагрузка f_{max} резко возрастает — как и в случае средней навигационной длины.

МНОМ является важной, но неполной характеристикой нагрузки на узлы сети. Более детальную картину дает распределение нагрузки относительно маршрутизации (HOM) по узлам сети. На рис. 4 показаны распределения HOM в стохастических и детерминистских сетях при разном числе вышедших из строя узлов. Результаты показывают, что в случае, когда все узлы исправны, распределение нагрузок в стохастических сетях, как и можно было ожидать, существенно шире, чем в iBT-сетях, причем MHOM в первых примерно в два раза выше, чем во вторых; это означает, что для одинаковых по размеру сетей пропускная способность маршрутизаторов в стохастических сетях должна быть существенно выше, чем в iBT-сетях. Распределение нагрузок в iBT-сетях продолжает оставаться более узким вплоть до значения доли вышедших из строя узлов ~ 30% (на последнем графике на рис. 4 показаны для большей наглядности только результаты для стохастических и iBT-сетей). Весьма наглядным является сравнение распределения нагрузок для сетей со свойствами

Рис. 3: Зависимость МНОМ от доли выведенных из строя узлов в стохастических сетях (окружности) и в сетях iBT с k = 8, 32 (ромбы); L = 128

"малого мира" с нагрузками в случае обыкновенной решетки с топологией тора: для полностью исправной решетки нагрузка для всех узлов одинакова, но существенно выше, чем для сетей малого мира (это непосредственно связано с существенно большей величиной среднего расстояния между узлами для обычной решетки); при выходе из строя даже небольшой части узлов (на рисунке представлены результаты для 1% и 5% вышедших из строя узлов) ширина распределения нагрузки резко увеличивается, так что значительная часть узлов может испытывать существенные перегрузки; это показывает, что сети малого мира не только обеспечивают меньшую временную задержку при передаче сообщений за счет малого среднего расстояния между узлами, но и являются существенно более устойчивыми при выходе из строя части узлов сети (например, при 5% вышедших из строя узлов средняя нагрузка на узлы оказывается примерно в пять раз выше чем для стохастических сетей с перемычками).

Как видно из этих результатов, в случае стохастических сетей распределение нагрузки на узлы является достаточно широким. Это является нежелательным свойством, так как означает, что узлы должны должны быть либо различными с точки зрения их пропускной способности, либо все должны быть рассчитаны на максимальную нагрузку, соответствующую "хвосту" распределения. В последнем случае значительное число узлов будет работать с существенной "недогрузкой". Можно предположить, что нагрузка на данный узел зависит от числа его связей (величины степени узла в терминологии теории графов). Поэтому представляет интерес выяснить — изменится ли ширина распределения нагрузки, если строить стохастические сети с фиксированной степенью узлов при условии минимального искажения распределения длин перемычек. К сожалению, результаты численного моделирования показывают, что фиксация величины степеней узлов в стохастических сетях практически не влияет на ширину распределения нагрузок: стохастических сетях практически не влияет на ширину распределения нагрузок: стохастических сетях практи-

Рис. 4: Распределение нагрузок (HOM) для стохастических сетей (сплошные линии), iBT (прерывистая линия) и тора без перемычек (пунктир) с долями вышедших из строя узлов (слева направо и сверху вниз): b = 0, 0,01N, 0,05N, 0,3N; L = 128

разную нагрузку.

3.3 Устойчивость сетей при каскадных отключениях

Когда часть узлов выходит из строя, нагрузка на узлы, оставшиеся работоспособными, возрастает. Если для некоторого узла эта возросшая нагрузка достигнет некоторого порога, а именно максимальной допустимой нагрузки для данного узла, то этот узел фактически тоже перестает быть работоспособным. Таким образом может развиться каскадный процесс отключения узлов (см., например, [10], [11]). Для каждого узла сетей вводится предельная (пороговая) нагрузка f_{th} , после достижения которой узел перестает передавать сообщения — фактически выходит из строя. Каскадное отключение в этой модели выглядит следующим образом: из сети случайным образом удаляется некоторая начальная доля узлов (предполагается, что эти узлы вышли из строя в силу аппаратных отказов или случайной перегрузки (не связан-

Рис. 5: Доля перегруженных узлов от доли испорченных узлов в стохастических сетях (прямоугольники), в стохастических сетях со степенью 6 (круги) и в сетях iBT с k = 8, 32 (ромбы); L = 128, навигация с глубиной просмотра 2; максимальная допустимая нагрузка равна $3f_{max}^{(iBT)}$; логарифмическая шкала по обеим осям

ной с перераспределением нагрузки)); это приводит к перераспределению нагрузок на другие узлы; определяется значение предельной (пороговая) нагрузки f_{th} и находятся все перегруженные узлы в сети; все перегруженные узлы удаляются из сети, что вновь приводит к перераспределению нагрузки и процедура предыдущего шага повторяется до тех пор, пока остаются перегруженные узлы.

На рис. 5 показана зависимость доли перегруженных узлов от доли первоначально испорченных узлов в стохастических и iBT-сетях. При этом максимальная допустимая нагрузка f_{th} выбирается исходя из распределения нагрузок в исправных сетях малого мира (первый график на рис. 4). А именно, f_{th} выбирается кратной максимальному значению нагрузки в iBT-сетях: $f_{th} = k f_{max}^{(iBT)}$ (то есть, при проектировании коммуникационной сети маршрутизаторы выбираются с k-кратным запасом прочности по отношению к iBT-сетям). Численное моделирование показывает, что если взять k = 2, то часть узлов в стохастической сети сразу оказывается перегруженной и эта перегрузка сразу вызывает каскадное отключение всей сети. На рис. 5 представлены результаты для k = 3.

Результаты показывают, что с точки зрения возможности каскадных отключений оба типа сетей ведут себя примерно одинаково: до значений доли вышедших из строя узлов ~ 10% ÷ 15% каскадных отключений нет, а выше этих значений происходит резкий рост перегруженных, и как следствие, вышедших из строя узлов. При этом iBT-сети являются даже несколько более устойчивыми к каскадным отключениям, чем стохастические сети. Как видно, фиксация величины степеней узлов в стохастических сетях не оказывает существенного влияния на каскадные процессы.

4 Заключение

При относительно небольшой доле неисправных узлов в детерминистских iBTсетях оказывается меньше потерянных сообщений, а при достижении доли неисправных узлов ~ 10% относительное число потерянных сообщений сравнивается для обоих типов сетей. С точки зрения устойчивости значений среднего навигационного расстояния между узлами $\ell^{(2)}$ стохастические и iBT-сети ведут себя примерно одинаково, причем пока доля вышедших из строя узлов $\leq 10\%$, средняя навигационная длина практически не меняется, а когда доля вышедших из строя узлов $\geq 10\%$, средняя навигационная длина резко возрастает. Аналогично среднему навигационному расстоянию, MHOM практически не меняется пока доля неисправных узлов не достигает $\approx 10\%$, и оба типа сетей (стохастические и детерминистские) ведут себя примерно одинаково (но нагрузка для iBT-сетей несколько ниже); при достижении доли неисправных узлов $\geq 10\%$ максимальная нагрузка f_{max} резко возрастает.

Распределение нагрузок в стохастических сетях, как и можно было ожидать, существенно шире, чем в iBT-сетях, причем MHOM в первых примерно в два раза выше, чем во вторых; это означает, что для одинаковых по размеру сетей пропускная способность маршрутизаторов в стохастических сетях должна быть существенно выше, чем в iBT-сетях. Распределение нагрузок в iBT-сетях продолжает оставаться более узким вплоть до значения доли вышедших из строя узлов ~ 30%. Фиксация величины степеней узлов в стохастических сетях несколько уменьшает ширину распределения нагрузок, однако стохастичность расположения перемычек остается достаточной для того, чтобы узлы испытывали существенно разную нагрузку.

Весьма наглядным является сравнение распределения нагрузок для сетей со свойствами "малого мира" с нагрузками в случае обыкновенной решетки с топологией тора: для полностью исправной решетки без перемычек нагрузка для всех узлов одинакова, но существенно выше, чем для сетей малого мира (это непосредственно связано с существенно большей величиной среднего расстояния между узлами для обычной решетки); при выходе из строя даже небольшой части узлов (~1% ÷ 5%) ширина распределения нагрузки резко увеличивается, так что значительная часть узлов может испытывать существенные перегрузки; это показывает, что сети малого мира не только обеспечивают меньшую временную задержку при передаче сообщений за счет малого среднего расстояния между узлами, но и являются существенно более устойчивыми при выходе из строя части узлов сети.

Результаты исследования устойчивости сетей при каскадных отключениях показывают, что с точки зрения возможности каскадных отключений оба типа сетей ведут себя примерно одинаково: до значений доли вышедших из строя узлов ~ 10% ÷ 15% каскадных отключений нет, а выше этих значений происходит резкий рост перегруженных, и как следствие, вышедших из строя узлов. При этом iBT-сети являются даже несколько более устойчивыми к каскадным отключениям, чем стохастические сети. Фиксация величины степеней узлов в стохастических сетях не оказывает существенного влияния на каскадные процессы.

В целом результаты работы показывают, что в отличие от регулярных решеток с топологией тора рассмотренные сети со свойствами "малого мира" в широком диапазоне значений относительного числа b/N вышедших из строя узлов сети являются весьма устойчивыми к выходу узлов из строя. При этом iBT-сети, построенные на основе детерминистского алгоритма, ведут себя несколько лучше, чем стохастические сети. Как отмечалось во Введении, в данной работе рассмотрены только статические (топологические) характеристики сетей — среднее навигационное расстояние (то есть расстояние при выбранной маршрутизации) и нагрузка относительно маршрутизации. Динамические модели передачи сообщений в рассматриваемых коммуникационных сетях, в частности, на основе теории систем массового обслуживания, будут изучены в следующих работах.

Работа частично финансируется РФФИ, грант 12-07-00408-а.

СПИСОК ЛИТЕРАТУРЫ

- Report on Institute for Advanced Architectures and Algorithms Interconnection Networks Workshop 2008 [Electronic resource] // Future Technologies Group Technical Report Series, Oak Ridge, Tennessee USA [Official website]. URL: http://www.csm.ornl.gov/workshops/IAA-IC-Workshop-08 (accessed: 01.08.2013).
- [2] Dally W. J., Towles B. P. Principles and Practices of Interconnection Networks. Amsterdam: Elsevier Science, 2003.
- [3] *Kleinrock L.* Communication Nets: Stochastic Message Flow and Design. New York: McGraw-Hill, 1964.
- [4] Barthelemy M. Spatial Networks // Phys. Reports. 2011. 499. 1-101.
- [5] Демичев А.П., Ильин В.А., Крюков А.П., Поляков С.П Сравнительный анализ алгоритмов построения больших коммуникационных сетей со свойствами "малого мира" // Вестник УГАТУ. 2013. 17, № 5. 167-175
- [6] Zhang, P., Powell R., Deng Y. Interlacing Bypass Rings to Torus Networks for More Efficient Networks // IEEE Transactions on Parallel and Distributed Systems. 2011. 287-295.
- [7] Zhang p., Deng Y. An Analysis of the Topological Properties of the Interlaced Bypass Torus (iBT) Networks // Appl. Math. Lett. 25. 2147-2155.
- [8] Watts D. J., Strogatz D. H. Collective dynamics of small-world networks // Nature. 1998. 393. 440-442.
- [9] Kleinberg J. M. Navigation in the small world // Nature. 2000. 406. 845.
- [10] Motter A. E., Lai Y.-C. Cascade-based attacks on complex networks. // Phys. Rev. 2002. E66. 065102-1–065102-4.
- [11] Dobson I., Carreras B., Newman D. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization // Chaos. 2007. 17. 026103-1-026103-13.